“截至2018年底,我国再制造发动机、变速器的生产能力超过15万台,再制造发电机、发动机等部件的生产能力超过160万台。2017年,我国汽车零部件再制造试点企业和示范基地相关企业的产值已超过40亿元,其中发动机再制造产值超过14亿元,市场呈现百花齐放的景象。”日前,“2019年中国汽车零部件再制造产业发展研讨会”在江苏省连云港举行,中国汽车工业协会汽车零部件再制造分会秘书长谢建军在接受《中国汽车报》记者采访时表示,我国零部件再制造行业在不断探索中快速发展,目前已进入以国家政策推动和市场机制拉动为中心的新阶段,呈现出前所未有的良好发展态势中国机械网okmao.com。
风潮汹涌,自当扬帆远航。经过近二十年的发展,我国零部件再制造行业规模不断壮大,市场体系逐渐完善;但面对未来依然任重道远,更需业界戮力同心。
政策逐渐完善 为产业发展铺路
建军表示,自20世纪末再制造概念被首次提出后,我国汽车零部件再制造产业已走过近二十年的路程,企业逐步摆脱了最初来自技术、政策、管理、观念等层面问题的困扰,迎来如今国家倡导和大力支持、多行业竞相发展再制造的大好形势。
早在2005年,国务院就曾颁布文件明确表示,国家“支持废旧机电产品再制造”,并组织相关绿色再制造技术及其创新能力的研发。同年11月,国家发改委等六部委联合颁布了“关于组织开展循环经济试点(第一批)工作的通知”,其中再制造被列为四个重点领域之一。
随后十多年中,政府先后制定和出台了一系列支持再制造产业发展的法规政策,为我国汽车零部件再制造产业的快速发展创造了良好的政策环境。 2008年3月,国家发改委发布《关于组织开展汽车零部件再制造试点工作的通知》,14家汽车整车和零部件企业成为首批汽车零部件再制造试点企业,标志着我国再制造产业化工作正式启动。
2009年1月,《循环经济促进法》正式实施,为推进再制造产业发展提供了法律依据。当年2月,工信部委托装备再制造技术国防科技重点实验室承担咨询项目《中国特色的再制造产业技术支撑体系和发展模式研究》,旨在推动中国特色的再制造产业模式的发展与规范化。
2010年2月,国家发改委和国家工商管理总局确定启用汽车零部件再制造产品标志,目的在于更好地加强对再制造产品的监管力度,进一步推进汽车零部件再制造产业的健康发展。同年5月,国家发改委等11个部委联合发布了《关于推进再制造产业发展的意见》,将汽车零部件、工程机械和机床作为再制造产业发展的重点领域。两个月后,国务院法制办公布了《报废机动车回收拆解管理条例(征求意见稿)向社会公开征求意见,其中明确规定拆解的汽车总成以及其他零配件可以交售给再制造企业,对产业的发展起到推波助澜的作用。
2011年,全国人大审议通过的“十二五”规划,把“再制造产业化”列入循环经济重点工程。2012年,国家发改委完成了对第一批再制造试点的13家企业的验收,并公布了第二批33家再制造试点企业名单及实施方案。2013年,国家发改委、财政部等部门联合颁发《再制造产品“以旧换再”试点实施方案》,为国内企业开展汽车零部件再制造扫平了政策障碍,统一了思想认识,营造了良好的发展氛围,用政府手段推动汽车零部件再制造产业的发展。
今年1月30日,国务院常务会议通过《报废机动车回收管理办法(修订草案)》(以下简称“新《管理办法》”,原《报废汽车回收管理办法》2001年6月由国务院发布),汽车报废的整个链条被激活,“五大总成”再制造解禁。业内人士认为,新《管理办法》在引导机动车回收行业健康发展的同时,也将推动再制造产业链的构建。
引导有序化、规范化、市场化发展
“新《管理办法》允许将具备条件的报废车‘五大总成’出售给再制造企业,并对回收、拆解等环节提出了更严格的环保要求,这对再制造行业来说是一个巨大突破。”谢建军表示,新《管理办法》的出台与实施将进一步推进报废汽车拆解、回收行业的体制改革,引导报废车行业走向有序化、规范化、市场化的发展模式,同时也为再制造产业增加更广泛的旧件来源,将产生良好的促进作用,为产业转型升级提供发展契机。
“原《管理办法》中的一些内容已经不能满足行业发展的需求,其修订符合新形势的要求,有利于推动行业快速健康发展。”中国汽车技术研究中心高级工程师黎宇科介绍称,原《管理办法》对于规范回收拆解活动,防止报废车和拼装车上路行驶,保障人民生命财产安全发挥了积极作用。但是,随着我国经济社会快速发展,居民生活水平大幅提高,购车成本不断下降,生产、销售拼装车现象已不再突出。因此,原《管理办法》需要适应新的情况予以修改。据悉,新《管理办法》对可接收“五大总成”的再制造企业条件提出了要求,同时要求再制造产品可追溯。
国家商务部市场建设司政策处副处长陶军也认为,新《管理办法》解决了机动车再制造工作的制度障碍,促进循环经济发展,同时进一步加强了报废机动车回收拆解的管理。他解释说,新《管理办法》明确将“促进资源综合利用和循环经济发展”作为立法目的之一,鼓励汽车再制造企业与回收拆解企业建立长期合作关系,以促进回收拆解环节与再制造环节的有效衔接;为提高报废汽车回收利用率,规定回收拆解企业应当采取有利于资源回收利用和再制造的方式拆解报废机动车;规定拆解的汽车总成以及其他零配件可以交售给再制造企业,这都将对再制造行业良性发展起到促进作用。
再制造将是后市场转型重要方向
“再制造产业在国内属于新兴产业,是循环利用、节能减排的生产制造业,可以推动绿色发展理念,有利于节约资源、减少原材料消耗、减少污染物和温室气体排放。”谢建军指出,通过对再制造原料件 (旧件)的检验,可以发现其中的瑕疵而不断完善产品设计;通过分析可以发现零部件使用寿命的不匹配,从而改进并优化零部件配置。
据了解,再制造能够发挥节能减排之效,与制造新品相比,再制造可节能60%,节材70%,节约成本50%,几乎不产生固体废物,大气污染物排放量降低80%以上。通过汽车、机电产品或零部件的再制造,可以实现产品的“涅槃重生”,对我国经济社会的可持续发展具有重大意义。
研究显示,汽车发动机再制造产品的成本仅为新品的1/4,节能达到60%以上,节材超过70%,最大限度地挖掘制造业产品的潜在价值,可让能源资源接近零浪费。比如,济南复强动力有限公司的发动机再制造产品价格仅是新品原价的75%,而如果用旧发动机去换再制造产品,还可以抵消25%的价格。这种以旧换新的方式,可节省一半的成本,不仅方便了客户,而且给报废品提供了一个良好的回收渠道,有利于资源的节约和综合利用。
谢建军表示,中国汽车市场正逐渐走向成熟,整个产业的重心正在由制造业向后市场转移,但作为汽车后市场主要组成部分的汽车配件市场和汽车维修市场面临着效率低、规模小、质量水平参差不齐等诸多问题,致使发展进入瓶颈期。作为循环经济的高级形式,再制造产品质量和性能可以达到原型新品的水平,并且已经实现了工厂化、规模化的生产方式。因此,再制造是后市场转型的重要方向,也是后市场战略的重要举措,将会对传统的后市场维修业务产生巨大的促进作用,再制造产品也将成为汽车后市场的重要选择。
“20年前,行业内只有济南复强动力一家国家正式批准、在营业执照上有‘再制造’内容的企业,其他企业都是自发的从事业务,而现在我们有超过300家会员单位,估计总产值超过100亿元,产品覆盖汽车所有可以再制造的部件,包括原厂再制造企业、独立的第三方企业;民营企业、国有企业及外商独资企业。”谢建军表示,我国零部件再制造行业从当初的不被人所知,到现在政府部门的高度重视;从开始的“无米之炊”,到现在的蓬勃发展,规模越来越大。
据悉,再制造试点企业中共有13家还从事零部件再制造业务,经过统计2018年再制造发动机2.3万台,再制造变速器4.6万台,再制造发电机4万台,再制造起动机10万台,再制造方向机4.1万台,再制造助力泵3.9万台,营业额合计11.7亿元。
康明斯(中国)投资有限公司是13家企业中的一家。该公司业务发展经理杨金茹在接受记者采访时表示:“再制造业务为康明斯可持续发展带来巨大贡献,每年向中国及全球市场提供数以万计的世界级质量、性能、以及可靠性的康明斯原厂再制造产品。”据悉,康明斯再制造业务始于上世纪50年代,经过几十年的发展,已成为全球最大的再制造生产企业之一,全球共有8家再制造工厂,1000余种再制造零件、2000余种再制造发动机,在成熟和新兴市场都有可观的份额。
济南复强动力相关负责人介绍称,经过多年发展,该公司已形成以再制造斯太尔发动机为主的二十多种再制造产品,形成了年产再制造发动机2万台的生产能力。
要冲破阻碍走向成熟
“再制造在我国已形成良好开端,但我们必须清醒地认识到,我国再制造产业仍处于起步探索阶段,与发达国家相比还有很大的差距。”国家发展和改革委员会环资司原副司长马荣表示,我国汽车零部件再制造行业虽然近年来快速发展,但与欧美等发达国家和地区相比,零部件的回收再利用率依然较低。据了解,在美国和欧盟市场,这个数字基本达到80%以上。
马荣指出,当前,制约我国再制造产业发展的问题有很多,首先,再制造作为一个新的理念还没有被人们广泛认识,各方对发展再制造产业的重要意义尚缺乏足够的认识。她表示,再制造已在工业发达国家得到广泛研究和应用;我国对废旧物资的再生利用也极为重视,并在国民经济发展的各个时期都制定了相应的规划,但由于法律法规不够健全,技术能力有待提高,再制造产业发展遭遇了不少现实尴尬。
马荣认为,公众认知度不足是摆在再制造产业面前的最大障碍,再制造对消费者而言,仍是一个陌生的概念,再制造产品更被普遍认为是二手翻新货;另外,我国汽配和维修市场还有大量的副厂件,给用户消费造成较大困扰,导致再制造产品的认可度不高。
此外,再制造还处于试点探索阶段,没有形成产业规模,技术和管理水平仍比较低,并且现行法规政策在某些方面制约了汽车零部件再制造产业的发展。
黎宇科也表示,我国零部件再制造行业在旧件回收、再制造产品及旧件出口、再制造业务申请、质保期使用及税收方面,都面临发展阻碍,不仅影响了企业的正常运营,同时也不利于产业健康发展。
“未来,随着产业的深度发展,再制造政策管理体系还将不断完善,一些新法规的出台以及一批旧法规的废止,将对行业发展产生重要影响。”黎宇科说。
国六排放标准即将实施,车型测试工况将从国五的NEDC(新标欧洲测试循环)切换为WLTC(全球轻型汽车测试循环)。据了解,相同产品在两种工况下进行测试,燃油消耗情况往往截然不同,有些车型甚至可能无法满足试验及法规要求,因此遭遇暂停销售或禁售命运。
测试方法变了,考察的重点也变了。这些改变体现在哪些方面?对汽车零部件技术有何导向作用?对于企业的产品规划又将产生怎样的影响?车辆测试工况转换可能带来的一系列问题,引发业界密切关注。
■ NEDC工况与实际情况脱轨
不少消费者购车后都有过相似的疑惑:汽车4S店展厅内同款车型贴在前窗的工信部“黄标签”显示,其在市区工况下油耗不足8L/100km,但车辆在使用过程中的实际油耗往往超过10L/100km。其实,此前工信部标识的车型油耗结果就是通过NEDC工况测试方法获得的。
由于在较长一段时间内,中国没有自己的工况标准,所以工信部在排放标准方面借鉴了欧洲曾使用的NEDC工况。它在一定时期内确实促进了我国汽车节能和环保技术的进步,但其自诞生之初就受到外界的质疑,因为在这一套测试体系中,车辆整体的运行工况比较稳定。
据悉,NEDC工况分为市区工况(City)和市郊工况(Highway)两部分。市区工况由四个市区运转循环单元组成,即同一过程重复四次;在测试过程中最高车速50km/h,平均车速19km/h,每个循环时间为195秒,共行驶4.052km。市郊工况测试共一个循环,平均车速62.6km/h,有效行驶时间400秒,共行驶6.955km路程。
研究人员在记录NEDC工况的试验数据并制图后发现,车辆在测试中多数时间处于匀速行驶状况。这种测试没有充分考虑市区交通堵塞时车辆走走停停的情况,市郊工况更是加速和匀速的测试,发动机会维持较好的工作状态,因此试验得到的油耗结果普遍偏低。同时,NEDC测试工况中四个市区循环的测试条件完全相同,导致很多企业在标定发动机时有更多的倾向性,即让车辆在测试的条件下更多地处在一个相对经济的工况,从而进一步加剧了实际油耗和工黄标签”数值的偏差。
另外,在NEDC工况下,与同功率输出的大排量自然吸气发动机相比,小排量涡轮增压发动机一般能够实现更好的燃油效率及较低的排放,发挥出自身的优势。所以,在许多采用这一测试标准的国家和地区,小排量涡轮增压发动机逐渐替代自然吸气发动机成为市场的主流,企业很大程度上也是为了油耗和排放数值更“好看”。
然而,实际交通路况时时变化,配装涡轮增压发动机的车型在频繁变化的工况下,燃油效率要低于稳定工况的。这就解释了为什么“黄标签”的数值颇为理想,但车主无论怎么驾驶,车辆油耗都无法“达标”。这样一来,工信部标识的油耗对于购车的参考意义被大打折扣。部分业内人士认为,在以NEDC工况为主导的国标条件下,“黄标签”的油耗数据不仅不具备参考意义,而且限制了一批实际使用中不是很耗油的大排量自然吸气车型。
■ WLTC工况的改变体现在两方面
事实上,无论欧洲的NEDC,还是日本的JC08,其测试条件均比较单一,在某些工况或在某些特定车型上都会出现标称与实际不符的情况。有鉴于此,由日本、美国、欧洲等地的专家共同制定的WLTC工况登上了世界舞台,其特点是在全世界范围内收集真实的行驶工况数据,将车辆通过功率/车重分为三个级别(其中目前主要用到的是Class 3b),并针对不同的时速,增加城市拥堵工况的比重。
相比于NEDC,WLTC工况的改变主要体现在两个方面:车速波动大、怠速工况少,而且没有特别的规律性;涵盖更广的速度区间,测试周期也更长。
WLTC工况中没有周期性的加速、减速,更好地体现了在不同拥堵程度的路面车速时快时慢的情况;而且,由于工况变化没有周期性,加大了车企在标定发动机时“耍心眼儿”的难度。另外,相比于NEDC测试体系,WLTC工况的测试周期从1180s延长到1800s,测试平均速度也从34km/h增至46km/h。相比于NEDC工况四个最高车速不到50km/h的城市循环,WLTC更长的测试周期和更高的平均速度,明显更贴近车辆实际行驶情况,而且更广的速度区间对车辆综合性能的考验也更严格。
虽然针对NEDC工况过于平稳的问题进行了改进,但这并不意味着WLTC工况无懈可击,对于某些实际情况,它依然存在“盲区”。据了解,WLTC工况的测试方法为按照设定的标准加速后再减速,并且在一些减速的工况中掺杂再加速的情况。虽然看起来比较合理,但其加速度并不大,所以与日常驾驶依然存在一些偏差。比如,用25秒从静止将车速提升到45km/h,其实已是相当漫长的加速过程。我们在日常遇到的实际情况是,驾驶员很可能在10秒左右就已将车速从静止提升至60km/h了。
另据介绍,WLTC工况中大部分时间的车速要比NEDC工况高许多,但由于平均车速较高,有利于节省燃油,所以理论上来说WLTC工况所得出来的油耗结果仍然偏低。但即便如此,相对于NEDC而言,WLTC工况得出的数据仍具有更大的参考意义。
■ 企业技术路线或将调整
工况的变化给消费者带来了福音,因为标识油耗的参考意义更大了。但对于车企而言,工况的切换可谓“牵一发而动全身”。在愈发严格的油耗法规和排放标准之下,不少企业压力陡增。据悉,在已施行WLTC工况的欧洲市场,许多在新工况下无法达标的车型不得不退出市场。比如,大众部分车型因排放不达标而被暂停销售;宝马也因为新标准的实施,停止旗下M3车型的销售。
除了以上这些可见的影响外,WLTC工况还将产生更为深层次的影响,且它们不会在短时间内显现。比如前文有所提及,NEDC工况的特性,在很大程度上促成了此前小排量涡轮增压发动机走热。而在WLTC工况下,小排量涡轮增压发动机恐怕会“降温”,大排量自然吸气发动机的测试结果反而更接近实际情况。事实上,业界已有人提出,这是否意味着被束之高阁的自然吸气发动机将迎来新的机遇,而小排量涡轮增压发动机将被“雪藏”?
一家主流自主品牌车企的发动机研发专家认为,工况切换至少表明,不能一味地追求小排量涡轮增压发动机了。“小排量涡轮增压发动机的优势在于平稳工况,但切换到WLTC工况后,相关车型的测试结果可能还不如同功率的大排量自然吸气发动机。”这位不愿具名的企业人士说。不过,他同时表示,不应否定涡轮增压技术对汽车行业的贡献,其为轻量化和小型化提供了发展思路,未来技术路线很可能是并行的,而非取代关系。
其实,无论涡轮增压还是自然吸气技术,都存在发展瓶颈。“自然吸气发动机要想增大功率只能通过两种方法,即加大排量和提高转速。但提升转速到一定程度后,其活塞连杆往复惯性、零部件摩擦阻力、进气系统负压等部分的内耗都会明显提升,所以提升转速是有瓶颈的。”汽车行业资深专家唐志军说。从这个角度出发,外界就不难理解宝马为何放弃此前多年坚持的自然吸气发动机转投涡轮增压阵营了——因为涡轮增压技术在当时的条件下有更大的潜力可挖。
涡轮增压技术让发动机以更小的排量、更小体积和更轻的质量实现了更高的功率和更大的扭矩,但涡轮增压发动机的油耗相比自然吸气发动机,并没有实质性改善。企业要达到乘用车平均油耗2020年降至5L/100km以下的目标,仅靠内燃机的优化难以实现,未来涡轮增压、自然吸气、混合动力等技术将并存。
行业视点
上海交通大学机械与动力工程学院内燃机研究所教授吕兴才
工况仅是评价手段 技术进步必不可少
我读到一些新闻报道或研究报告,内容是:对比某一款发动机或某一项具体技术,在两种测试工况下的表现。这是不严谨的,因为用有限的试验和小样本数据,得出某一结论并不科学。从本质上说,NEDC更侧重于稳态工况,WLTC更注重瞬态和过渡工况,它们无法直接进行比较,我们也无法评价两类循环工况本身对油耗和排放的影响。发动机技术始终朝着低油耗和低排放方向发展,油耗法规和排放标准的发展亦是如此,测试工况仅仅是评价的一种手段。
事实上,国六排放标准引入颗粒物浓度限制是最大的变化。发动机小型强化及直喷技术可以提高燃油经济性,得到了业界的公认,但如果要达到颗粒物浓度限制标准,直喷发动机比较“吃亏”,还需采取其他技术措施。目前,不同的技术方案很难同时兼顾油耗、气体排放、颗粒物排放和动力性的要求,都是各种措施一起上才能解决问题。而针对颗粒物浓度的应对方案是提高喷射压力,加颗粒捕集器,但这会带来其他工程问题,讲起来比较复杂。
总而言之,与其推断工况切换将带来哪些变化,不如说法规标准对油耗、排放的要求越来越高,企业必须采取相应的措施。无论采用什么测试工况,技术进步都必不可少。
博格华纳相关技术人员:WLTC工况对技术发展提出更高要求
相比NEDC,WLTC工况下车型的平均速度、最高速度、最大加速度等都有提升,使被检测产品的负荷增大、油耗增加。与此同时,WLTC怠速比例大幅下降,削弱了怠速启停和混合动力等技术的节油效果。WLTC工况可能促使发动机研发从一味小型化向寻找适中尺寸过渡。未来,我认为,1.5L~2.0L排量发动机需求将占乘用车产品主流。
WLTC工况对于整车标定的瞬态工况要求更高,瞬态过程油耗和排放占整个运行区间的比例更大。因此,减少大负荷和外特性的加浓必不可少,而在NEDC工况下,整车企业不太关心这方面的情况。
怠速启停、48V微混等技术在WLTC工况下的节能效果将被弱化。在我看来,未来的标杆动力总成既要上增压,也要有米勒循环,还要附带微混系统。另外,不能简单说NEDC工况促成了小排量涡轮增压发动机的发展趋势。涡轮增压为发动机小型化、轻量化提供了一条适应技术需求的可行之路,以后还会继续发展。
从技术发展的层面说,由于WLTC对瞬态工况和平均车速的增加,我认增程式混合动力可能更适用。专用于增程式混合动力的高效发动机(如马自达的均质压燃技术)将迎来较好的发展前景。48V混动系统可能会向高压混动系统发展,而发动机将向深度阿特金森-米勒循环发展,减小瞬态运行需求。 结合RDE(真实排放测试)循环,发动机要在保证功率的同时,增加排气温度以降低高速加浓区间,改善实际道路排放和油耗。对于涡轮增压器和排期歧管而言,需要耐受1050℃高温,对材料和隔热也提出了更高要求。