返回顶部
首页
机械 | 工程 | 工具 | 行业 | 信息 | 集合 | 诗词 | 组词 | 范文 |
 
您现在的位置:
首页 高端访谈 详细信息

人工智能预测光学中的非线性超快动力学

2021-05-01    阅读量:31924    新闻来源:互联网     |  投稿

坦佩雷大学的研究人员已经成功地使用人工智能来预测超短光脉冲与物质相互作用时发生的非线性动力学。这种新颖的解决方案可用于高效,快速的数值建模,例如在成像,制造和手术中。研究结果发表在著名的《自然机器情报》杂志上中国机械网okmao.com


人工智能预测光学中的非线性超快动力学 中国机械网,okmao.com


人工智能可以区分不同类型的激光脉冲传播,就像它可以识别面部识别中表情的细微差别一样。


新发现的解决方案可以简化基础研究中的实验设计,并将算法嵌入下一代激光系统中,以确保实时优化。这可以用于例如制造和外科手术中,其中脉冲特性会受到目标环境的干扰。


非线性超快光物质相互作用是研究人员数十年来一直难以理解的东西。研究领域在许多研究领域中至关重要,从在药物开发中使用光谱工具到技术材料的精密加工,遥感到高分辨率成像。


可以训练神经网络来识别模式


当高功率超短光脉冲与玻璃光纤相互作用时,会发生一系列高度非线性的相互作用,从而导致注入的光的时间和光谱(颜色)特性发生复杂的变化。


到目前为止,对这些非线性和多维相互作用的研究都是基于非线性Schroedinger方程的,该方程是一种缓慢且计算量大的方法,极大地限制了使用数值技术实时设计或优化实验的能力。


“现在已经通过使用人工智能解决了这个问题。我们的团队已经能够训练神经网络,以识别这种复杂进化所固有的模式。重要的是,一旦经过训练,该网络还能够预测先前未知的非线性进化。情景,而且基本上可以立即做到。”坦佩雷大学研究小组负责人,国家光电研究与创新旗舰机构主任Go?ryGenty教授说。


这项研究使用一种称为“递归神经网络”的专业架构,该架构具有内部存储器。这样的网络不仅可以识别与非线性动力学相关的特定模式,而且还可以了解这种模式在扩展的距离内在时域和频谱域中如何演化。


神经网络可以以毫秒为单位预测演变。新颖的解决方案将导致对非线性影响传播的所有系统进行更高效,更快速的数值建模,从而改善用于电信,制造和成像的设备的设计。


光子学中的新应用


该研究报告了两个对光子学非常感兴趣的案例:极端脉冲压缩和超宽带激光源开发。


Genty解释说:“使用带有内部存储器的神经网络的方法使我们能够绕过解决底层数学模型的传统方法,这非常耗时,有时需要禁止的存储器资源。” Genty解释说。


随着机器学习应用在所有科学领域的快速发展,Genty预计神经网络将很快成为分析复杂非线性动力学,优化宽带信号源和频率梳的生成以及设计的重要标准工具超快光学实验。


免责声明:本文仅代表作者本人观点,与中网机械,okmao.com无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。本网转载自其它媒体的信息,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。客服邮箱:23341571@qq.com | 客服QQ:23341571
全站地图 | 二级目录 | 上链请联系业务QQ:23341571 或 业务微信:kevinhouitpro