该校金属材料强度国家重点实验室有机光电子材料及界面课题组提出了分子掺杂有机光伏器件中的活性层优化模型,揭示了掺杂剂在其中的作用机理并提出了一种可控的高效掺杂器件制备工艺。其相关研究成果以《异质结分子掺杂高效激子解离及长载流子寿命提升聚合物太阳能电池量子效率》为题,近日发表在美国化学会能源类旗舰期刊《美国化学会能源快报》上。
有机太阳能电池的光生电荷过程包括光子吸收、激子解离、电荷传输与电荷收集四个基本步骤中国机械网okmao.com。目前针对这一光电转化过程仍然缺少有效、直接的电学性能优化手段。分子掺杂剂作为一种第三组分,其在体相异质结中的分布,会直接影响掺杂效果并决定器件性能;不匹配的掺杂剂分布会导致掺杂的“零效应”和“负效应”。然而,目前的研究并未明确分子掺杂剂在本体异质结中的优化分布,从而使得分子掺杂有机光伏器件性能优化缺少调控目标与实现途径。
为解决这一关键科学问题,西安交通大学金属材料强度国家重点实验室有机光电子材料及界面课题组化繁为简地设计制备了平面异质结模型器件;从而准确调控了掺杂剂在电子给体、电子受体及异质结处的分布。科研人员利用前期工作中提出的路易斯酸小分子三(五氟苯基)硼烷作为P型掺杂剂,发现掺杂剂在给—受体异质结处的分布是实现器件外量子效率提升的关键。借助超快光谱、瞬态光电压及光电子能谱等分析手段,科研人员进一步发现异质结掺杂具有促进激子分离、延长载流子寿命并降低载流子传输复合的作用。科研人员进一步利用顺序涂布的三层成膜方法,成功实现了掺杂剂在本体异质结中的分布调控;在高效非富勒烯有机光伏体系中成功实现了短路电流的提升。
美国一项最新研究以金纳米粒子为催化剂,成功地用绿光激发“人工光合作用”,将二氧化碳和水转变成碳氢化合物。可液化的碳氢化合物易储藏和运输,适合用作太阳能储能媒介。
由于化学动力学方面的障碍,现有的光化学技术不易将二氧化碳转换为碳氢化合物,有些技术只能利用高能紫外线而不是可见光。
美国伊利诺伊大学厄巴纳-尚佩恩分校研究人员日前在英国《自然·通讯》杂志上发表论文说,他们开发的新技术利用了金纳米粒子的特性,能高效吸收可见光中的绿光,不需要紫外线、高温环境或电能输入。
研究人员使用一种起辅助作用的离子液体,充入二氧化碳至饱和状态。浸在液体中的金纳米粒子表面会产生富含电荷的环境,有利于激发二氧化碳分子,促使其发生反应。实验生成了多种含1至3个碳原子的碳氢化合物,包括甲烷、乙烯、乙炔、丙烷和丙烯等。
在反应中,金纳米粒子扮演的角色类似于植物叶绿素。不过研究人员承认,该技术的反应效率远不如叶绿素。他们下一步将调整催化剂属性以提高效率,并寻求实现大规模生产的办法。