返回顶部
返回首页
返回首页
自主机器人玩NanoLEGO:科学家正在开发一种可以选择性地抓握和移动单个分子的自主人工智能系统,中国机械网,okmao.com
home 您现在的位置: 首页 >机器人>技术中心 > 详细信息
自主机器人玩NanoLEGO:科学家正在开发一种可以选择性地抓握和移动单个分子的自主人工智能系统
2020年10月16日    阅读量:318    新闻来源:中国机械网 okmao.com  |  投稿

分子是日常生活的基石。许多材料都是由它们组成的,有点像乐高模型由多种不同的砖块组成。但是,尽管单个乐高积木可以简单地移动或移除,但在纳米世界中却并非如此中国机械网okmao.com


自主机器人玩NanoLEGO:科学家正在开发一种可以选择性地抓握和移动单个分子的自主人工智能系统 中国机械网,okmao.com


原子和分子的行为与宏观物体的行为完全不同,每块积木都需要有自己的“使用说明书”。


来自于利希(Jülich)和柏林(Berlin)的科学家现在已经开发了一种人工智能系统,该系统可以使用扫描隧道显微镜自主学习如何抓握和移动单个分子。该方法已发表在《科学进展》上,不仅与研究有关,而且与分子3D打印等新型生产技术有关。


快速原型制作,快速且经济高效的原型或模型生产-众所周知的3D打印-早已确立了自己作为行业重要工具的地位。


克里斯蒂安博士解释说:“如果这个概念可以转移到纳米尺度上,以使单个分子像乐高积木一样被专门放在一起或再次分离,那么,鉴于存在大约1060种可能的分子类型,可能性几乎是无限的。”瓦格纳(Wagner)是ForschungszentrumJülich的ERC分子操纵工作组负责人。


但是,有一个问题。尽管扫描隧道显微镜是用于使单个分子来回移动的有用工具,但始终需要特殊的自定义“配方”以引导显微镜的尖端以目标方式在空间上排列分子。这个配方既不能计算,也不能凭直觉推论-纳米级的机理太易变且太复杂。


毕竟,显微镜的尖端最终不是柔性夹具,而是刚性圆锥体。这些分子只是轻微地粘附在显微镜尖端上,只能通过复杂的运动方式放置在正确的位置。


“迄今为止,只有通过手工操作,反复试验,才能实现分子的这种定向运动。但是,借助自学,自主的软件控制系统,我们现在首次成功地找到了解决方案。纳米级的多样性和可变性,以及使这一过程自动化。”Jülich量子纳米科学研究所所长Stefan Tautz教授高兴地说道。


这一发展的关键在于所谓的强化学习,这是机器学习的一种特殊形式。柏林工业大学机器学习系主任克劳斯-罗伯特·穆勒(Klaus-RobertMüller)博士解释说:“我们没有为软件代理规定解决方案,而是奖励成功和惩罚失败。” 


该算法反复尝试解决手头的任务并从其经验中学习。几年前,公众首次意识到通过AlphaGo Zero进行强化学习。这个人工智能系统自主开发了战略,可以在不研究人类玩家的情况下赢得高度复杂的围棋游戏-短短几天后,它就击败了专业围棋玩家。


“在我们的案例中,该试剂的任务是从一个分子中通过复杂的化学键网络将单个分子除去。确切地说,这些分子是per分子,例如用于染料和有机光的分子。发光二极管。” Christian Wagner博士解释说。


这里的特殊挑战是,移动它们所需的力不得超过扫描隧道显微镜的尖端吸引分子所用的键的强度,因为否则该键会断裂。瓦格纳补充说:“因此,显微镜尖端必须执行一种特殊的运动模式,这是我们以前必须手工发现的。” 尽管软件代理最初会执行完全随机的移动动作,以破坏显微镜尖端与分子之间的结合,


然而,在纳米范围内使用强化学习带来了额外的挑战。构成扫描隧道显微镜尖端的金属原子最终可能会稍微移动,从而每次都会改变与分子的键合强度。Stefan教授说:“每一次新尝试都会增加改变的风险,从而增加尖端与分子之间的键断裂的风险。


因此,由于其经验随时可能被淘汰,因此迫使软件代理学习得特别快。” Tautz解释。“这有点像自动驾驶时的道路网络,交通法规,车身和车辆操作规则在不断变化。” 研究人员通过使该软件学习简单的环境模型来克服了这一挑战,在该模型中,操作与初始周期并行进行。然后,代理同时在现实和自己的模型中进行训练,这具有显着加速学习过程的效果。


克劳斯·罗伯特·穆勒(Klaus-RobertMüller)强调:“这是我们首次成功地将人工智能和纳米技术结合在一起。” Tautz补充说:“到目前为止,这只是一个'原则证明'。” “但是,我们有信心,我们的工作将为机器人辅助的功能性超分子结构(例如分子晶体管,存储单元或量子位)的自动构建铺平道路,其速度,精度和可靠性将远远超过目前是可能的。


标签:行业资讯今日头条产品资讯机械应用人工智能技术中心机器人服务与娱乐机器人系统及软件
免责声明: 本文仅代表作者本人观点,与中国机械网无关。本网对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。请读者仅作参考,并请自行承担全部责任。本网转载自其它媒体的信息,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。客服邮箱:service@cnso360.com | 客服QQ:23341571
中国机械网手机版MOBILE
扫描二维码,获取手机版最新资讯 中国机械网 您还可以直接微信扫描打开
全站地图

深圳网络警察报警平台 深圳网络警
察报警平台

公共信息安全网络监察 公共信息安
全网络监察

经营性网站备案信息 经营性网站
备案信息

中国互联网举报中心 中国互联网
举报中心

中国文明网传播文明 中国文明网
传播文明

深圳市市场监督管理局企业主体身份公示 工商网监
电子标识